Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
PLOS Digit Health ; 2(3): e0000199, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2261645

ABSTRACT

The COVID-19 pandemic has spurred an unprecedented demand for interventions that can reduce disease spread without excessively restricting daily activity, given negative impacts on mental health and economic outcomes. Digital contact tracing (DCT) apps have emerged as a component of the epidemic management toolkit. Existing DCT apps typically recommend quarantine to all digitally-recorded contacts of test-confirmed cases. Over-reliance on testing may, however, impede the effectiveness of such apps, since by the time cases are confirmed through testing, onward transmissions are likely to have occurred. Furthermore, most cases are infectious over a short period; only a subset of their contacts are likely to become infected. These apps do not fully utilize data sources to base their predictions of transmission risk during an encounter, leading to recommendations of quarantine to many uninfected people and associated slowdowns in economic activity. This phenomenon, commonly termed as "pingdemic," may additionally contribute to reduced compliance to public health measures. In this work, we propose a novel DCT framework, Proactive Contact Tracing (PCT), which uses multiple sources of information (e.g. self-reported symptoms, received messages from contacts) to estimate app users' infectiousness histories and provide behavioral recommendations. PCT methods are by design proactive, predicting spread before it occurs. We present an interpretable instance of this framework, the Rule-based PCT algorithm, designed via a multi-disciplinary collaboration among epidemiologists, computer scientists, and behavior experts. Finally, we develop an agent-based model that allows us to compare different DCT methods and evaluate their performance in negotiating the trade-off between epidemic control and restricting population mobility. Performing extensive sensitivity analysis across user behavior, public health policy, and virological parameters, we compare Rule-based PCT to i) binary contact tracing (BCT), which exclusively relies on test results and recommends a fixed-duration quarantine, and ii) household quarantine (HQ). Our results suggest that both BCT and Rule-based PCT improve upon HQ, however, Rule-based PCT is more efficient at controlling spread of disease than BCT across a range of scenarios. In terms of cost-effectiveness, we show that Rule-based PCT pareto-dominates BCT, as demonstrated by a decrease in Disability Adjusted Life Years, as well as Temporary Productivity Loss. Overall, we find that Rule-based PCT outperforms existing approaches across a varying range of parameters. By leveraging anonymized infectiousness estimates received from digitally-recorded contacts, PCT is able to notify potentially infected users earlier than BCT methods and prevent onward transmissions. Our results suggest that PCT-based applications could be a useful tool in managing future epidemics.

2.
Lancet Infect Dis ; 23(5): 556-567, 2023 05.
Article in English | MEDLINE | ID: covidwho-2184728

ABSTRACT

BACKGROUND: The global surge in the omicron (B.1.1.529) variant has resulted in many individuals with hybrid immunity (immunity developed through a combination of SARS-CoV-2 infection and vaccination). We aimed to systematically review the magnitude and duration of the protective effectiveness of previous SARS-CoV-2 infection and hybrid immunity against infection and severe disease caused by the omicron variant. METHODS: For this systematic review and meta-regression, we searched for cohort, cross-sectional, and case-control studies in MEDLINE, Embase, Web of Science, ClinicalTrials.gov, the Cochrane Central Register of Controlled Trials, the WHO COVID-19 database, and Europe PubMed Central from Jan 1, 2020, to June 1, 2022, using keywords related to SARS-CoV-2, reinfection, protective effectiveness, previous infection, presence of antibodies, and hybrid immunity. The main outcomes were the protective effectiveness against reinfection and against hospital admission or severe disease of hybrid immunity, hybrid immunity relative to previous infection alone, hybrid immunity relative to previous vaccination alone, and hybrid immunity relative to hybrid immunity with fewer vaccine doses. Risk of bias was assessed with the Risk of Bias In Non-Randomized Studies of Interventions Tool. We used log-odds random-effects meta-regression to estimate the magnitude of protection at 1-month intervals. This study was registered with PROSPERO (CRD42022318605). FINDINGS: 11 studies reporting the protective effectiveness of previous SARS-CoV-2 infection and 15 studies reporting the protective effectiveness of hybrid immunity were included. For previous infection, there were 97 estimates (27 with a moderate risk of bias and 70 with a serious risk of bias). The effectiveness of previous infection against hospital admission or severe disease was 74·6% (95% CI 63·1-83·5) at 12 months. The effectiveness of previous infection against reinfection waned to 24·7% (95% CI 16·4-35·5) at 12 months. For hybrid immunity, there were 153 estimates (78 with a moderate risk of bias and 75 with a serious risk of bias). The effectiveness of hybrid immunity against hospital admission or severe disease was 97·4% (95% CI 91·4-99·2) at 12 months with primary series vaccination and 95·3% (81·9-98·9) at 6 months with the first booster vaccination after the most recent infection or vaccination. Against reinfection, the effectiveness of hybrid immunity following primary series vaccination waned to 41·8% (95% CI 31·5-52·8) at 12 months, while the effectiveness of hybrid immunity following first booster vaccination waned to 46·5% (36·0-57·3) at 6 months. INTERPRETATION: All estimates of protection waned within months against reinfection but remained high and sustained for hospital admission or severe disease. Individuals with hybrid immunity had the highest magnitude and durability of protection, and as a result might be able to extend the period before booster vaccinations are needed compared to individuals who have never been infected. FUNDING: WHO COVID-19 Solidarity Response Fund and the Coalition for Epidemic Preparedness Innovations.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2 , Cross-Sectional Studies , Reinfection/prevention & control , Adaptive Immunity
3.
CMAJ Open ; 10(4): E1027-E1033, 2022.
Article in English | MEDLINE | ID: covidwho-2203528

ABSTRACT

BACKGROUND: SARS-CoV-2 transmission has an impact on education. In this study, we assessed the performance of rapid antigen detection tests (RADTs) versus polymerase chain reaction (PCR) for the diagnosis of SARS-CoV-2 infection in school settings, and RADT use for monitoring exposed contacts. METHODS: In this real-world, prospective observational cohort study, high-school students and staff were recruited from 2 high schools in Montréal, Canada, and followed from Jan. 25 to June 10, 2021. Twenty-five percent of asymptomatic participants were tested weekly by RADT (nasal) and PCR (gargle). Class contacts of cases were tested. Symptomatic participants were tested by RADT (nasal) and PCR (nasal and gargle). The number of cases and outbreaks were compared with those of other high schools in the same area. RESULTS: Overall, 2099 students and 286 school staff members consented to participate. The overall specificity of RADTs varied from 99.8% to 100%, with a lower sensitivity, varying from 28.6% in asymptomatic to 83.3% in symptomatic participants. Secondary cases were identified in 10 of 35 classes. Returning students to school after a 7-day quarantine, with a negative PCR result on days 6-7 after exposure, did not lead to subsequent outbreaks. Of cases for whom the source was known, 37 of 51 (72.5%) were secondary to household transmission, 13 (25.5%) to intraschool transmission, and 1 to community contacts between students in the same school. INTERPRETATION: Rapid antigen detection tests did not perform well compared with PCR in asymptomatic individuals. Reinforcing policies for symptom screening when entering schools and testing symptomatic individuals with RADTs on the spot may avoid subsequent substantial exposures in class. Preprint: medRxiv - doi.org/10.1101/2021.10.13.21264960.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Cohort Studies , Point-of-Care Systems , Prospective Studies , COVID-19/diagnosis , COVID-19/epidemiology
4.
Exp Biol Med (Maywood) ; : 15353702221140406, 2022 Nov 25.
Article in English | MEDLINE | ID: covidwho-2138980

ABSTRACT

This editorial article aims to highlight advances in artificial intelligence (AI) technologies in five areas: Collaborative AI, Multimodal AI, Human-Centered AI, Equitable AI, and Ethical and Value-based AI in order to cope with future complex socioeconomic and public health issues.

5.
Int J Infect Dis ; 121: 1-10, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1920941

ABSTRACT

BACKGROUND: Epidemics of COVID-19 strained hospital resources. We describe temporal trends in mortality risk and length of stays in hospital and intensive care units (ICUs) among patients with COVID-19 hospitalized through the first three epidemic waves in Canada. METHODS: We used population-based provincial hospitalization data from the epicenters of Canada's epidemics (Ontario and Québec). Adjusted estimates were obtained using marginal standardization of logistic regression models, accounting for patient-level and hospital-level determinants. RESULTS: Using all hospitalizations from Ontario (N = 26,538) and Québec (N = 23,857), we found that unadjusted in-hospital mortality risks peaked at 31% in the first wave and was lowest at the end of the third wave at 6-7%. This general trend remained after adjustments. The odds of in-hospital mortality in the highest patient load quintile were 1.2-fold (95% CI: 1.0-1.4; Ontario) and 1.6-fold (95% CI: 1.3-1.9; Québec) that of the lowest quintile. Mean hospital and ICU length of stays decreased over time but ICU stays were consistently higher in Ontario than Québec. CONCLUSIONS: In-hospital mortality risks and length of ICU stays declined over time despite changing patient demographics. Continuous population-based monitoring of patient outcomes in an evolving epidemic is necessary for health system preparedness and response.


Subject(s)
COVID-19 , Epidemics , Cohort Studies , Hospital Mortality , Hospitalization , Humans , Intensive Care Units , Length of Stay , Ontario/epidemiology , Quebec/epidemiology , Retrospective Studies
6.
STAR Protoc ; 3(2): 101463, 2022 06 17.
Article in English | MEDLINE | ID: covidwho-1886130

ABSTRACT

Non-pharmacological interventions (NPIs) are important for controlling infectious diseases such as COVID-19, but their implementation is currently monitored in an ad hoc manner. To address this issue, we present a three-stage machine learning framework called EpiTopics to facilitate the surveillance of NPI. In this protocol, we outline the use of transfer-learning to address the limited number of NPI-labeled documents and topic modeling to support interpretation of the results. For complete details on the use and execution of this protocol, please refer to Wen et al. (2022).


Subject(s)
COVID-19 , Communicable Diseases , Fluprednisolone/analogs & derivatives , Humans , Machine Learning , Public Health
7.
Patterns (N Y) ; 3(3): 100435, 2022 Mar 11.
Article in English | MEDLINE | ID: covidwho-1740085

ABSTRACT

The COVID-19 pandemic has highlighted the importance of non-pharmacological interventions (NPIs) for controlling epidemics of emerging infectious diseases. Despite their importance, NPIs have been monitored mainly through the manual efforts of volunteers. This approach hinders measurement of the NPI effectiveness and development of evidence to guide their use to control the global pandemic. We present EpiTopics, a machine learning approach to support automation of NPI prediction and monitoring at both the document level and country level by mining the vast amount of unlabeled news reports on COVID-19. EpiTopics uses a 3-stage, transfer-learning algorithm to classify documents according to NPI categories, relying on topic modeling to support result interpretation. We identified 25 interpretable topics under 4 distinct and coherent COVID-related themes. Importantly, the use of these topics resulted in significant improvements over alternative automated methods in predicting the NPIs in labeled documents and in predicting country-level NPIs for 42 countries.

8.
Int J Infect Dis ; 118: 73-82, 2022 May.
Article in English | MEDLINE | ID: covidwho-1700024

ABSTRACT

BACKGROUND: Many studies have examined the effectiveness of non-pharmaceutical interventions (NPIs) on SARS-CoV-2 transmission worldwide. However, less attention has been devoted to understanding the limits of NPIs across the course of the pandemic and along a continuum of their stringency. In this study, we explore the relationship between the growth of SARS-CoV-2 cases and an NPI stringency index across Canada before the accelerated vaccine roll-out. METHODS: We conducted an ecological time-series study of daily SARS-CoV-2 case growth in Canada from February 2020 to February 2021. Our outcome was a back-projected version of the daily growth ratio in a stringency period (i.e., a 10-point range of the stringency index) relative to the last day of the previous period. We examined the trends in case growth using a linear mixed-effects model accounting for stringency period, province, and mobility in public domains. RESULTS: Case growth declined rapidly by 20-60% and plateaued within the first month of the first wave, irrespective of the starting values of the stringency index. When stringency periods increased, changes in case growth were not immediate and were faster in the first wave than in the second. In the first wave, the largest decreasing trends from our mixed effects model occurred in both early and late stringency periods, depending on the province, at a geometric mean index value of 30⋅1 out of 100. When compared with the first wave, the stringency periods in the second wave possessed little association with case growth. CONCLUSIONS: The minimal association in the first wave, and the lack thereof in the second, is compatible with the hypothesis that NPIs do not, per se, lead to a decline in case growth. Instead, the correlations we observed might be better explained by a combination of underlying behaviors of the populations in each province and the natural dynamics of SARS-CoV-2. Although there exist alternative explanations for the equivocal relationship between NPIs and case growth, the onus of providing evidence shifts to demonstrating how NPIs can consistently have flat association, despite incrementally high stringency.


Subject(s)
COVID-19 , Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , Canada/epidemiology , Humans , Pandemics/prevention & control , SARS-CoV-2
9.
CMAJ ; 194(6): E195-E204, 2022 02 14.
Article in English | MEDLINE | ID: covidwho-1686132

ABSTRACT

BACKGROUND: Understanding inequalities in SARS-CoV-2 transmission associated with the social determinants of health could help the development of effective mitigation strategies that are responsive to local transmission dynamics. This study aims to quantify social determinants of geographic concentration of SARS-CoV-2 cases across 16 census metropolitan areas (hereafter, cities) in 4 Canadian provinces, British Columbia, Manitoba, Ontario and Quebec. METHODS: We used surveillance data on confirmed SARS-CoV-2 cases and census data for social determinants at the level of the dissemination area (DA). We calculated Gini coefficients to determine the overall geographic heterogeneity of confirmed cases of SARS-CoV-2 in each city, and calculated Gini covariance coefficients to determine each city's heterogeneity by each social determinant (income, education, housing density and proportions of visible minorities, recent immigrants and essential workers). We visualized heterogeneity using Lorenz (concentration) curves. RESULTS: We observed geographic concentration of SARS-CoV-2 cases in cities, as half of the cumulative cases were concentrated in DAs containing 21%-35% of their population, with the greatest geographic heterogeneity in Ontario cities (Gini coefficients 0.32-0.47), followed by British Columbia (0.23-0.36), Manitoba (0.32) and Quebec (0.28-0.37). Cases were disproportionately concentrated in areas with lower income and educational attainment, and in areas with a higher proportion of visible minorities, recent immigrants, high-density housing and essential workers. Although a consistent feature across cities was concentration by the proportion of visible minorities, the magnitude of concentration by social determinant varied across cities. INTERPRETATION: Geographic concentration of SARS-CoV-2 cases was observed in all of the included cities, but the pattern by social determinants varied. Geographically prioritized allocation of resources and services should be tailored to the local drivers of inequalities in transmission in response to the resurgence of SARS-CoV-2.


Subject(s)
COVID-19/epidemiology , Demography/statistics & numerical data , Social Determinants of Health/statistics & numerical data , COVID-19/economics , Canada/epidemiology , Cities/epidemiology , Cross-Sectional Studies , Demography/economics , Humans , SARS-CoV-2 , Social Determinants of Health/economics , Socioeconomic Factors
10.
J Biomed Inform ; 129: 104028, 2022 05.
Article in English | MEDLINE | ID: covidwho-1683261
11.
PLoS Med ; 18(11): e1003829, 2021 11.
Article in English | MEDLINE | ID: covidwho-1595916

ABSTRACT

BACKGROUND: The opioid epidemic in North America has been driven by an increase in the use and potency of prescription opioids, with ensuing excessive opioid-related deaths. Internationally, there are lower rates of opioid-related mortality, possibly because of differences in prescribing and health system policies. Our aim was to compare opioid prescribing rates in patients without cancer, across 5 centers in 4 countries. In addition, we evaluated differences in the type, strength, and starting dose of medication and whether these characteristics changed over time. METHODS AND FINDINGS: We conducted a retrospective multicenter cohort study of adults who are new users of opioids without prior cancer. Electronic health records and administrative health records from Boston (United States), Quebec and Alberta (Canada), United Kingdom, and Taiwan were used to identify patients between 2006 and 2015. Standard dosages in morphine milligram equivalents (MMEs) were calculated according to The Centers for Disease Control and Prevention. Age- and sex-standardized opioid prescribing rates were calculated for each jurisdiction. Of the 2,542,890 patients included, 44,690 were from Boston (US), 1,420,136 Alberta, 26,871 Quebec (Canada), 1,012,939 UK, and 38,254 Taiwan. The highest standardized opioid prescribing rates in 2014 were observed in Alberta at 66/1,000 persons compared to 52, 51, and 18/1,000 in the UK, US, and Quebec, respectively. The median MME/day (IQR) at initiation was highest in Boston at 38 (20 to 45); followed by Quebec, 27 (18 to 43); Alberta, 23 (9 to 38); UK, 12 (7 to 20); and Taiwan, 8 (4 to 11). Oxycodone was the first prescribed opioid in 65% of patients in the US cohort compared to 14% in Quebec, 4% in Alberta, 0.1% in the UK, and none in Taiwan. One of the limitations was that data were not available from all centers for the entirety of the 10-year period. CONCLUSIONS: In this study, we observed substantial differences in opioid prescribing practices for non-cancer pain between jurisdictions. The preference to start patients on higher MME/day and more potent opioids in North America may be a contributing cause to the opioid epidemic.


Subject(s)
Analgesics, Opioid/therapeutic use , Drug Prescriptions/statistics & numerical data , Pain/drug therapy , Adolescent , Adult , Aged , Canada , Cohort Studies , Dose-Response Relationship, Drug , Female , Humans , Male , Middle Aged , Morphine/administration & dosage , Morphine/therapeutic use , Taiwan , United Kingdom , United States , Young Adult
12.
Vaccines (Basel) ; 10(1)2021 Dec 23.
Article in English | MEDLINE | ID: covidwho-1580361

ABSTRACT

COVID-19 seroprevalence changes over time, with infection, vaccination, and waning immunity. Seroprevalence estimates are needed to determine when increased COVID-19 vaccination coverage is needed, and when booster doses should be considered, to reduce the spread and disease severity of COVID-19 infection. We use an age-structured model including infection, vaccination and waning immunity to estimate the distribution of immunity to COVID-19 in the Canadian population. This is the first mathematical model to do so. We estimate that 60-80% of the Canadian population has some immunity to COVID-19 by late Summer 2021, depending on specific characteristics of the vaccine and the waning rate of immunity. Models results indicate that increased vaccination uptake in age groups 12-29, and booster doses in age group 50+ are needed to reduce the severity COVID-19 Fall 2021 resurgence.

13.
JMIR Public Health Surveill ; 7(9): e26503, 2021 09 07.
Article in English | MEDLINE | ID: covidwho-1443942

ABSTRACT

BACKGROUND: True evidence-informed decision-making in public health relies on incorporating evidence from a number of sources in addition to traditional scientific evidence. Lack of access to these types of data as well as ease of use and interpretability of scientific evidence contribute to limited uptake of evidence-informed decision-making in practice. An electronic evidence system that includes multiple sources of evidence and potentially novel computational processing approaches or artificial intelligence holds promise as a solution to overcoming barriers to evidence-informed decision-making in public health. OBJECTIVE: This study aims to understand the needs and preferences for an electronic evidence system among public health professionals in Canada. METHODS: An invitation to participate in an anonymous web-based survey was distributed via listservs of 2 Canadian public health organizations in February 2019. Eligible participants were English- or French-speaking individuals currently working in public health. The survey contained both multiple-choice and open-ended questions about the needs and preferences relevant to an electronic evidence system. Quantitative responses were analyzed to explore differences by public health role. Inductive and deductive analysis methods were used to code and interpret the qualitative data. Ethics review was not required by the host institution. RESULTS: Respondents (N=371) were heterogeneous, spanning organizations, positions, and areas of practice within public health. Nearly all (364/371, 98.1%) respondents indicated that an electronic evidence system would support their work. Respondents had high preferences for local contextual data, research and intervention evidence, and information about human and financial resources. Qualitative analyses identified several concerns, needs, and suggestions for the development of such a system. Concerns ranged from the personal use of such a system to the ability of their organization to use such a system. Recognized needs spanned the different sources of evidence, including local context, research and intervention evidence, and resources and tools. Additional suggestions were identified to improve system usability. CONCLUSIONS: Canadian public health professionals have positive perceptions toward an electronic evidence system that would bring together evidence from the local context, scientific research, and resources. Elements were also identified to increase the usability of an electronic evidence system.


Subject(s)
Artificial Intelligence , Public Health , Canada , Cross-Sectional Studies , Electronics , Humans
15.
Int J Infect Dis ; 102: 254-259, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-893931

ABSTRACT

OBJECTIVE: The North American coronavirus disease-2019 (COVID-19) epidemic exhibited distinct early trajectories. In Canada, Quebec had the highest COVID-19 burden and its earlier March school break, taking place two weeks before those in other provinces, could have shaped early transmission dynamics. METHODS: We combined a semi-mechanistic model of SARS-CoV-2 transmission with detailed surveillance data from Quebec and Ontario (initially accounting for 85% of Canadian cases) to explore the impact of case importation and timing of control measures on cumulative hospitalizations. RESULTS: A total of 1544 and 1150 cases among returning travelers were laboratory-confirmed in Quebec and Ontario, respectively (symptoms onset ≤03-25-2020). Hospitalizations could have been reduced by 55% (95% CrI: 51%-59%) if no cases had been imported after Quebec's March break. However, if Quebec had experienced Ontario's number of introductions, hospitalizations would have only been reduced by 12% (95% CrI: 8%-16%). Early public health measures mitigated the epidemic spread as a one-week delay could have resulted in twice as many hospitalizations (95% CrI: 1.7-2.1). CONCLUSION: Beyond introductions, factors such as public health preparedness, responses and capacity could play a role in explaining interprovincial differences. In a context where regions are considering lifting travel restrictions, coordinated strategies and proactive measures are to be considered.


Subject(s)
COVID-19/transmission , SARS-CoV-2 , Travel , Adult , Aged , COVID-19/epidemiology , Canada/epidemiology , Humans , Middle Aged , Models, Theoretical , Public Health
SELECTION OF CITATIONS
SEARCH DETAIL